Pulmonary function and lung diffusion capacity in patients with different forms of pulmonary hypertension

Main Article Content

S. O. Progonov
O. O. Torbas
S. M. Kushnir
Yu. M. Sirenko
G. D. Radchenko

Abstract

The aim – to compare pulmonary function test (PFT) results and diffusion capacity of the lungs for carbon monoxide (DLCO) in patients with various forms of pulmonary arterial hypertension (PAH), chronic thromboembolic pulmonary hypertension (CTEPH) and healthy individuals; to establish correlations between PFT, DLCO and parameters used to stratify the risk of death in pulmonary hypertension (PH).
Materials and methods. 74 patients were included: 18 with idiopathic PAH (IPAH), 15 with PAH associated with congenital heart defects (PAH-CHD), 21 with CTEPH and 20 healthy persons (control group). All participants underwent an assessment of PFT (vital capacity (VC), forced vital capacity (FVC), forced expiratory volume during one second (FEV1), peak expiratory velocity (PEV), maximum expiratory flow (MEF) 75, MEF-50, MEF-25) and measurement of DLCO. For all PH patients the standard examinations were provided, including N-terminal brain natriuretic peptide (NT-proBNP) assessment and right heart catheterization. 
Results. Patients of all PH groups had significantly lower parameters of PFT and DLCO, compared to the control group. The most pronounced and reliable decrease in PFT was observed among patients with PAH-CHD. The lowest DLCO was observed in CTEPH group. PH patients with DLCO < 64 %, compared with DLCO ≥ 64 %, had significantly lower distance of the 6-minute walk test (6MWT) (p = 0.014), TAPSE (р = 0.015), SpO2 during pulse oximetry and direct measurement (p = 0.023 and 0.032, respectively), hemoglobin level (p = 0.031). They had a significantly higher level of NT-proBNP (p = 0.012) and they were somewhat older (p = 0.053). DLCO < 64 % correlated with hemoglobin level (r = –0.31, p = 0.022), 6MWT distance (r = –0.35, p = 0.012), SpO2 (r = –0.29, p = 0.036), TAPSE (r = –0.34, p = 0.012) and NT-proBNP (r = 0.27, p = 0.048). Independent predictors of reduced DLCO were hemoglobin level (β = 0.95, CI 0.90-0.99), SpO2 (β = 0.75, CI 0.58-0.95) and TAPSE (β = 0.75, CI 0.63-0.91).
Conclusions. Parameters of PFT and DLCO were significantly lower in patients of all PH groups compared to the healthy individuals. Patients with PAH-CHD had significantly worse PFT parameters. In the general population of patients with PH, PFT indicators, which characterize inspiratory capabilities, were independently correlated with the area of ​​the right atrium. The reduced DLCO (< 64 %) correlated with the level of hemoglobin, SpO2 and indicators of the patient functional state. However, low levels of hemoglobin, SpO2, and TAPSE were independent predictors of low DLCO. 

Article Details

Keywords:

pulmonary arterial hypertension, chronic thromboembolic pulmonary hypertension, pulmonary functional test, spirometry, diffusion capacity of the lungs for carbon monoxide

References

Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eurn Heart J. 2022 Aug 26;43(38). http://doi.org/10.1093/eurheartj/ehac237. DOI: https://doi.org/10.1093/eurheartj/ehac237

Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Pulmonary function in primary pulmonary hypertension. J Amer Coll Cardiol. 2003 Mar;41(6):1028-35. http:/doi.org/10.1016/s0735-1097(02)02964-9. DOI: https://doi.org/10.1016/S0735-1097(02)02964-9

Horn M, Ries A, Neveu C, Moser K. Restrictive Ventilatory Pattern in Precapillary Pulmonary Hypertension. Amer Rev Resp Dis. 1983 Jul;128(1):163-5. http:/doi.org/10.1164/arrd.1983.128.1.163. DOI: https://doi.org/10.1164/arrd.1983.128.1.163

Jing Z-C, Xu X-Q, Badesch DB, Jiang X, Wu Y, Liu J-M, et al. Pulmonary function testing in patients with pulmonary arterial hypertension. Respir Med [Internet]. 2009;103(8):1136-42. Available from: http://doi.org/10.1016/j.rmed.2009.03.009 DOI: https://doi.org/10.1016/j.rmed.2009.03.009

Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med [Internet]. 1987;107(2):216-23. Available from: http://doi.org/10.7326/0003-4819-107-2-216 DOI: https://doi.org/10.7326/0003-4819-107-2-216

Burke CM, Glanville AR, Morris AJ, Rubin D, Harvey JA, Theodore J, et al. Pulmonary function in advanced pulmonary hypertension. Thorax. 1987 Feb 1;42(2):131-5. http://doi.org/10.1136/thx.42.2.131. DOI: https://doi.org/10.1136/thx.42.2.131

D’Alonzo GE, Bower JS, Dantzker DR. clinical investigations. Chest. 1984 Apr;85(4):457-61. http://doi.org/10.1378/chest.85.4.457. DOI: https://doi.org/10.1378/chest.85.4.457

Meyer FJ. Peripheral airway obstruction in primary pulmonary hypertension. Thorax. 2002 Jun 1;57(6):473-6. http://doi.org/10.1136/thorax.57.6.473.

Low AT, Medford ARL, Millar AB, Tulloh RMR. Lung function in pulmonary hypertension. Respir Med. 2015 Oct;109(10):1244-9. http://doi.org/10.1016/j.rmed.2015.05.022. DOI: https://doi.org/10.1016/j.rmed.2015.05.022

Kwi Young Kang, Chan Hong Jeon, Sung Jae Choi, Bo Young Yoon, Chan Bum Choi, Chang Hoon Lee, et al. Survival and prognostic factors in patients with connective tissue disease‐associated pulmonary hypertension diagnosed by echocardiography: results from a Korean nationwide registry. Intern J Rheumatic Dis. 2015 Jul 27;20(9):1227-36. http://doi.org/10.1111/1756-185X.12645. DOI: https://doi.org/10.1111/1756-185X.12645

Blanquez-Nadal M, Piliero N, Guillien A, Doutreleau S, Salvat M, Thony F, et al. Exercise hyperventilation and pulmonary gas exchange in chronic thromboembolic pulmonary hypertension: Effects of balloon pulmonary angioplasty. J Heart and Lung Transplantation. 2021 Sep. http://doi.org/10.1016/j.healun.2021.09.009. DOI: https://doi.org/10.1016/j.healun.2021.09.009

Broberg CS, Van Woerkom RC, Swallow E, Dimopoulos K, Diller G-P, Allada G, et al. Lung function and gas exchange in Eisenmenger syndrome and their impact on exercise capacity and survival. Int J Cardiol [Internet]. 2014;171(1):73-7. Available from: http://doi.org/10.1016/j.ijcard.2013.11.047. DOI: https://doi.org/10.1016/j.ijcard.2013.11.047

Moreno-Macías H, Dockery DW, Schwartz J, Gold DR, Laird NM, Sienra-Monge JJ, et al. Ozone exposure, vitamin C intake, and genetic susceptibility of asthmatic children in Mexico City: a cohort study. Respiratory Research. 2013 Jan 1;14(1):14–4. http://doi.org/10.1186/1465-9921-14-14. DOI: https://doi.org/10.1186/1465-9921-14-14

Hughes JMB, Pride NB. In defence of the carbon monoxide transfer coefficient KCO (TL/VA). European Respiratory Journal. 2001 Feb 1;17(2):168–74. http://doi.org/10.1183/09031936.01.17201680. DOI: https://doi.org/10.1183/09031936.01.17201680

Hyatt RE, Scanlon PD, Nakamura M. Interpretation of Pulmonary Function Tests. Lippincott Williams & Wilkins; 2014; p. 41. https://pulmo-ua.com/wp-content/uploads/2021/12/PFT-Interpretation_Hyatt.pdf

Coghlan JG, Denton CP, Grünig E, Bonderman D, Distler O, Khanna D, et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Annals of the Rheumatic Diseases [Internet]. 2014 Jul 1;73(7):1340–9. Available from: https://ard.bmj.com/content/73/7/1340 http://doi.org/10.1136/annrheumdis-2013-203301. DOI: https://doi.org/10.1136/annrheumdis-2013-203301

Allanore Y, Borderie D, Avouac J, Zerkak D, Meune C, Hachulla E, et al. High N-terminal pro-brain natriuretic peptide levels and low diffusing capacity for carbon monoxide as independent predictors of the occurrence of precapillary pulmonary arterial hypertension in patients with systemic sclerosis. Arthritis & Rheumatism. 2007;58(1):284–91. http://doi.org/10.1002/art.23187. DOI: https://doi.org/10.1002/art.23187

Khanna D, Gladue H, Channick R, Chung L, Distler O, Furst DE, et al. Recommendations for screening and detection of connective tissue disease-associated pulmonary arterial hypertension: Pulmonary hypertension in connective tissue diseases. Arthritis Rheum [Internet]. 2013;65(12):3194–201. Available from: http://doi.org/10.1002/art.38172 DOI: https://doi.org/10.1002/art.38172

Chandra S, Shah SJ, Thenappan T, Archer SL, Rich S, Gomberg-Maitland M. Carbon monoxide diffusing capacity and mortality in pulmonary arterial hypertension. The Journal of Heart and Lung Transplantation. 2010 Feb;29(2):181–7. http://doi.org/10.1016/j.healun.2009.07.005. DOI: https://doi.org/10.1016/j.healun.2009.07.005

Trip P, Nossent EJ, de Man FS, van den Berk IAH, Boonstra A, Groepenhoff H, et al. Severely reduced diffusion capacity in idiopathic pulmonary arterial hypertension: patient characteristics and treatment responses. European Respiratory Journal. 2013 Aug 15;42(6):1575–85. http://doi.org/10.1183/09031936.00184412. DOI: https://doi.org/10.1183/09031936.00184412

Benza RL, Gomberg-Maitland M, Miller DP, Frost A, Frantz RP, Foreman AJ, et al. The REVEAL Registry Risk Score Calculator in Patients Newly Diagnosed With Pulmonary Arterial Hypertension. Chest. 2012 Feb;141(2):354–62. http://doi.org/10.1378/chest.11-0676. DOI: https://doi.org/10.1378/chest.11-0676

Benza RL, Farber HW, Frost A, Hossein-Ardeschir Ghofrani, Gómez-Sánchez MA, Langleben D, et al. REVEAL risk scores applied to riociguat-treated patients in PATENT-2: Impact of changes in risk score on survival. The Journal of Heart and Lung Transplantation. 2018 Apr 1;37(4):513–9. http://doi.org/10.1016/j.healun.2017.11.006. DOI: https://doi.org/10.1016/j.healun.2017.11.006

Benza RL, Gomberg-Maitland M, Elliott CG, Farber HW, Foreman AJ, Frost AE, et al. Predicting Survival in Patients With Pulmonary Arterial Hypertension. Chest. 2019 Aug;156(2):323–37. http://doi.org/10.1016/j.chest.2019.02.004. DOI: https://doi.org/10.1016/j.chest.2019.02.004

Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Pulmonary arterial hypertension in France: Results from a national registry. Am J Respir Crit Care Med [Internet]. 2006;173(9):1023–30. Available from: http://doi.org/10.1164/rccm.200510-1668oc DOI: https://doi.org/10.1164/rccm.200510-1668OC

Szturmowicz M, Kacprzak A, Franczuk M, Burakowska B, Kurzyna M, Fijałkowska A, et al. Low DLCO in idiopathic pulmonary arterial hypertension - clinical correlates and prognostic significance. Pneumonol Alergol Pol [Internet]. 2016;84(2):87–94. Available from: http://doi.org/10.5603/PiAP.2016.0006 DOI: https://doi.org/10.5603/PiAP.2016.0006

Garcia AR, Blanco I, Ramon L, Pérez-Sagredo J, Guerra-Ramos FJ, Martín-Ontiyuelo C, et al. Predictors of the response to phosphodiesterase-5 inhibitors in pulmonary arterial hypertension: an analysis of the Spanish registry. Respir Res [Internet]. 2023;24(1):223. Available from: http://doi.org/10.1186/s12931-023-02531-1 DOI: https://doi.org/10.1186/s12931-023-02531-1

Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, et al. Diagnosis of pulmonary hypertension. Eur Respir J [Internet]. 2019;53(1):1801904. Available from: http://doi.org/10.1183/13993003.01904-2018 DOI: https://doi.org/10.1183/13993003.01904-2018

Unifikovanyi klinichnyi protokol ekstrenoi, pervynnoi, vtorynnoi (spetsializovanoi) ta tretynnoi (vysokospetsializovanoi) medychnoi dopomohy (UKPMD) “Leheneva hipertenziia u doroslykh” zatverdzhenyi nakazom Ministerstva okhorony zdorov’ya Ukrainy vid 21 chervnia 2016 roku №614. [Ukrainian] Available from: https://moz.gov.ua/uk/nakazi-moz

American Thoracic Society. ATS Statement: Guidelines for the Six-Minute Walk Test. American Journal of Respiratory and Critical Care Medicine. 2002 Jul;166(1):111–7. http://doi.org/10.1164/ajrccm.166.1.at1102. DOI: https://doi.org/10.1164/ajrccm.166.1.at1102

Modi P, Goldin J, Cascella M. Diffusing capacity of the lungs for carbon monoxide. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. https://pubmed.ncbi.nlm.nih.gov/32310609/

Meyer FJ. Peripheral airway obstruction in primary pulmonary hypertension. Thorax. 2002 Jun 1;57(6):473–6. http://doi.org/10.1136/thorax.57.6.473. DOI: https://doi.org/10.1136/thorax.57.6.473

Yanagisawa A, Naito A, Jujo-Sanada T, Tanabe N, Ishida K, Matsumiya G, et al. Vascular involvement in chronic thromboembolic pulmonary hypertension is associated with spirometry obstructive impairment. BMC Pulmonary Medicine. 2021 Dec;21(1). http://doi.org/10.1186/s12890-021-01779-x. DOI: https://doi.org/10.1186/s12890-021-01779-x

Price LC, Wort SJ, Perros F, Dorfmüller P, Huertas A, Montani D, et al. Inflammation in Pulmonary Arterial Hypertension. Chest. 2012 Jan;141(1):210–21. http://doi.org/10.1378/chest.11-0793. DOI: https://doi.org/10.1378/chest.11-0793

Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med [Internet]. 1995;151(5):1628–31. Available from: http://dx.doi.org/10.1164/ajrccm.151.5.7735624 DOI: https://doi.org/10.1164/ajrccm.151.5.7735624

Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. Elevated Levels of Inflammatory Cytokines Predict Survival in Idiopathic and Familial Pulmonary Arterial Hypertension. Circulation. 2010 Aug 31;122(9):920–7. http://doi.org/10.1161/CIRCULATIONAHA.109.933762. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.933762

Schober A, Zernecke A. Chemokines in vascular remodeling. Thromb Haemost. 2007;97(5):730–7. https://pubmed.ncbi.nlm.nih.gov/17479183/ DOI: https://doi.org/10.1160/TH07-02-0085

Nally JE, McCall R, Young LC, Wakelam MJO, Thomson NC, McGrath JC. Mechanical and biochemical responses to endothelin-1 and endothelin-3 in human bronchi. European Journal of Pharmacology Molecular Pharmacology. 1994 Dec 1;288(1):53–60. http://doi.org/10.1016/0922-4106(94)90009-4. DOI: https://doi.org/10.1016/0922-4106(94)90009-4

Arunthari V, Burger CD, Lee AS. Correlation of pulmonary function variables with hemodynamic measurements in patients with pulmonary arterial hypertension. The Clinical Respiratory Journal. 2010 Dec 15;5(1):35–43. http://doi.org/10.1111/j.1752-699X.2010.00188.x DOI: https://doi.org/10.1111/j.1752-699X.2010.00188.x

Hock J, Willinger L, Pozza RD, Ewert P, Hager A. Abnormalities in pulmonary function and volumes in patients with CHD: a systematic review. Cardiology in the Young. 2023 Jan 5;33(2):169–81. http://doi.org/10.1017/S1047951122004103. DOI: https://doi.org/10.1017/S1047951122004103

Hoeper MM, Vonk‐Noordegraaf A. Is there a vanishing pulmonary capillary syndrome? The Lancet Respiratory Medicine. 2017 Sep 1;5(9):676–8. http://doi.org/10.1016/S2213-2600(17)30291-6. DOI: https://doi.org/10.1016/S2213-2600(17)30291-6